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The structure of eddies embedded in a swirling stream of an incompressible, 
inviscid fluid is examined. Laminar motion is assumed, as is axial symmetry of 
the flow field. 

It is supposed that the eddies are formed either (i) as wakes behind solid 
obstacles placed in the stream, or (ii) as the products of vortex breakdown occur- 
rences, in which case the eddies are completely surrounded by fluid of the outer 
stream. In either event, it is assumed that the presence of an eddy only 
slightly disturbs the motion of the outer stream, i.e. that the eddies are 
slender. In  particular, this requires that ro Q,/Wm < 1, where r0 is the maximum 
radial extent of the eddy, and Q, and Wm are defined below. 

The analysis is carried to completion when the undisturbed outer stream is a 
wheel flow. Principal results derived are summarized below. (1) Eddy lengths 
are related directly and simply to the internal vorticity, providing that there is 
swirl in the outer flow. (2) A corollary is that very slender eddies have a maximum 
possible length. In  the case (ii) above, this length is 27rW,/Qm, where Wm is the 
axial velocity and am the angular velocity of the undisturbed outer flow. (3) 
The shapes of the free streamlines bounding the eddy are calculated. A feature 
is the cusped nature of an eddy free end. (4) The motion inside the eddy 
and the disturbance to the outer stream are calculated. 

Irrotational base flows are exceptional. Results (1)  and (2) above cannot be 
found for a potential outer flow, but (3) and (4) remain. 

1. Introduction 
This paper deals with the steady axisymmetric motions around and within 

finite eddies situated on the axis of rotation of a swirling stream of infinite extent. 
The eddies may either be the wakes of solid bodies placed in the stream, or 

free eddies, surrounded on all sides by fluid of the outer stream. To make the 
analysis tractable, the eddies are assumed to be slender, so that their cross- 
sectional area is a slowly varying function of axial distance. The work is moti- 
vated by the desire to examine the possibility of containing one fluid by another 
with a minimum use of solid boundaries. 

‘Wake eddies ’ occur immediately downstream of solid obstacles, such as a 
cone or cylinder, which induce the main stream to separate. Although viscosity 
is responsible for separation and hence for the existence of the eddy, and provides 
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the motive force driving the flow within the eddy through shearing action a t  the 
eddy boundary, we ignore viscous effects upon the dynamics of the flow away 
from the boundaries. Hence an inviscid model is assumed in which the viscous 
shear layer responsible for the effects cited above collapses onto the dividing 
(free) streamline. 

Batchelor (1956 a) has deduced certain integral conditions upon vorticity 
which must be satisfied in a region of closed streamlines if the viscosity is non- 
zero (but arbitrarily small). Presumably, in order for a solution representing such 
a flow to be the steady limit of B real flow as Re-tco, it must satisfy these 
conditions, which then supplement the Euler equations. 

For axisymmetric flow, Batchelor showed that these supplementary restric- 
tions select the functional form of the vorticity distribution within the eddy, 
but not its intensity. (The intensity is presumably related to the details of the 
bounding shear layers.) In  our case, the vorticity distribution selected is that of 
the Hill’s spherical vortex (cf. Lamb 1932). Thus, as may easily be verified, the 
vorticity within the eddy satisfies the full Helmholtz equations. Also, if a constant 
axial pressure gradient proportional to Re-l is allowed, the velocity distribution 
within the eddy is an exact solution of the full Navier-Stokes equations.? 

We shall not pursue this line of inquiry further here, but shall confine ourselves 
to the limiting case Re -+ co. 

The problem outlined above has important points of contact with that pre- 
sented by Childress (1966) for slender two-dimensional eddies embedded in a 
potential flow. This paper may in part be considered a modification of Childress’s 
work to axial symmetry, and to a vortical main stream. 

Although the physical situation is more intricate than that treated by Chil- 
dress, the mathematics involved is in fact much simpler. The simplification 
realized here is, in its essentials, a feature of well-known properties of axial 
source distributions. Instead of a non-linear integral equation requiring a 
numerical solution, we need only deal with a simple non-linear differential 
equation in order to find the shape of the free streamline. This equation is solved 
by quadratures, and a solution is found in closed form. 

The presence of a solid to induce separation may not be a necessary ingredient 
in the formation of a self-contained, recirculating eddy embedded in a rotational 
external stream. We can suppose such an eddy (which we have called the ‘free’ 
eddy) to be the product of a ‘vortex breakdown’. Again, the analysis is only 
tractable if it  is slender, its slenderness being measured by (say) its fineness ratio. 

The characteristic feature of the vortex breakdown phenomena (as described 
for example by Hall (1966), Benjamin (1962), and observed by Harvey (1962)) 
is the sudden appearance of a stagnation point on the axis of rotation in a 
swirling stream, followed by a recirculating eddying region. This region may 
under some circumstances be closed and self-contained. For example, some of 
the breakdowns observed by Harvey were closed and elongated. 

Although the details of the mechanism responsible for the transition from the 
primary swirling flow remain obscure, it is, nevertheless, of interest to attempt 

t This has been pointed out by Batchelor (1956a, p. 187). 
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an investigation of the structure of the two-celled flows which result after a 
breakdown. 

Some of the photographs of breakdowns produced in cylindrical tubes (cf. 
Chanaud 1965) show them to be slender, with fineness ratios of the order of 10-l. 
It is hoped that consideration of slender eddies producing small perturbations 
will reveal features present in finite disturbance breakdowns as well. 

The solutions for free eddies and wake eddies are found by the same method. 
Therefore, solutions are first carried out for the latter case, and then the slight 
adaptations required for the application to free eddies are indicated. 

In  $ 4, small perturbation equations are presented which apply for arbitrary 
vorticity distributions in the main stream. Axisymmetric slender body theory for 
potential flow is then modified in detail for rotational streams for the case of 
‘wheel flows’ which have solid body rotation a t  upstream infinity. The dynamic 
pressure on the outside eddy surface is found. The disturbance displays the 
well-known Taylor non-uniqueness (cf. Squire 1956) but this does not affect the 
boundary shape to the usual order of approximation in slender body theory. 

Within the eddy, the solution for the flow is found by employing approxima- 
tions of boundary-layer type; and the dynamic pressure on the interior eddy 
surface is found in 0 5. 

In  $ 6, the pressures a t  the eddy interface are matched, and an equation for the 
shape of the free streamline is deduced. The cusped nature of the shape of any 
eddy free end is discussed. The fact that free ends are cusped is not a conse- 
quence of the particular approximations used in this paper. Batchelor (1956b, 
p. 394) has presented a simple argument which shows that any closed eddy 
bounded by a shear layer must have cusped free ends. Batchelor’s argument 
can be used to show that if the speed just inside the eddy is faster than that 
outside, the cusp must be re-entrant, rather like a smoke ring which has lost its 
hole. For then, &p( U2 - V 2 )  = constant > 0 if U is the speed inside and V that 
outside along the discontinuity surface. Thus, if the eddy is closed it must have a 
cusp inside on the axis, and a stagnation point outside. If re-entrant cusps are 
excluded, as in this paper, the speed inside must be less than that outside. If the 
speeds match, of course, there is no cusp (such is the case, for example, with 
the Hill’s spherical vortex). 

The shape of the free streamline is calculated in $7,  and a solution away from 
the cusped region is obtained in closed form. The profiles for both wake and free 
eddies comprise one-parameter families of curves. Although the profile shapes 
are in fact insensitive to changes of this parameter, the lengths of free eddies 
depend strongly upon it, being given by 

wm 
Q, 

4(1-2v)~K(v)- ,  

where K is the complete elliptic integral, W, the undisturbed mainstream speed, 
Q, its angular velocity, and v the parameter characterizing the problem. Here 
v above is restricted to the range (0, &), so it is predicted that the maximum 
possible length for a very slender eddy is 

2n(W,/Q,). 
34-2 
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Since v is related to the strength of the eddy vorticity, a measure of the eddy 
length permits an estimate of interior vorticity to be made for given conditions 
of the surrounding stream. 

In regard to the question of forces on a free eddy, a remark concerning the 
relation between viscous effects (ignored in the paper) and the pressure in the 
surrounding stream should be made. The drag experienced by an eddy in a 
stream without an ambient pressure gradient is in part an inviscid wave drag (if 
downstream waves are produced) and in part due to viscous effects. Under such 
circumstances a stationary eddy cannot be maintained. For the eddy to remain 
in equilibrium, the drag must be balanced by a thrust exerted by an adverse 
pressure gradient outside, Thus we expect that in a real fluid, the base flow must, 
decelerate in order to maintain a stationary eddy. A modification to the theory 
presented here to inviscid eddies embedded in a pressure gradient will be presented 
by the author elsewhere. 

2. Formulation of the problem 
It is well known (cf. Squire 1956) that the Euler equations governing steady, 

incompressible, inviscid, axisymmetric flows may be reduced to the following 
form : (a )  D’Y G Yr,-(l/r)Yr+Yi.zz = r2H’(Y)-FF’(Y), 

( b )  r~ = F(Y), 
(c) rw = Yr, 
( d )  ru  = -Yz, 

( e )  p + +p(u2 + v2 + w2) = pH(Y). 

Here u, v, w are, respectively, the radial ( r ) ,  azimuthal, and axial (2) components 
of velocity. The pressure is p ,  the density is p, and Hand P are arbitrary functions 
of the meridional stream function Y [defined by (1 c ;  d ) ]  which are det)ermined 
providing the flow is known at  an initial station. 

The azimuthal component of vorticity g is given by 

g = - (l/r){rW’(Y) -FF’(Y)) .  

Consider an infinite flow field having arepresentative axial speed W, and angular 
speed Qm (about the symmetry axis). Non-dimensionalize (1) by comparing all 
velocities to W,, H to BW?,,, and pressure pW5.  Lengths will be compared to a 
characteristic length L,  which will be specified later, F to L2Q, and ‘Y to UW,. 

Using the same symbols to denote dimensionless quantities, the non-dimen- 
sional form of (1) is: 

( 2 )  1 
(a)  D2Y = Jp2H’(Y) - AZFF’(Y), 
(b)  rv =P(Yf ,  

( d )  r u =  -Y 2.9 

(c) rw = Yr, 

(e) p + ~ ( u 2 + v u 2 +  w2) = *H(Y). 

The dimensionless swirl parameter h = LQ,/W,, the inverse Rossby number, 
is a measure of the relative importance of azimuthal velocity at a distance L from 
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the axis, to through-flow velocity. It is also known as the tangent of the ‘swirl 
angle ’, which is the helix pitch angle of a particle if it is imagined to move on a 
helix located a t  a distance L from the axis. 

The portion of the flow determined by streamlines originating at  upstream 
infinity ( z  -+ - co) will be called the ‘outer ’, or ‘base’ flow, and quantities per- 
taining to it will be denoted by the subscript 0. In  particular, specification of 
the flow as x - f  - 00, which we will assume to be given, determines the functions 

In addition we consider a bounded region composed of closed streamlines, 
which we shall variously call the ‘inner’ region, or the ‘eddy’, and the flow in it, 
the ‘inner’ flow. This region will be governed in general by a different vorticity 
distribution from the outer flow. Presumably, the vorticity distribution in the 
inner8region is determined by the requirement that the flow be truly steady as 

4 (Yo) and 4 (Yo)* 

r ’  

4 
FIGURE 1. Configurations for (a)  wake eddies, and ( b )  free eddies. 

Re+co from finite values, as discussed by Batchelor ( 1 9 5 6 ~ ) .  Quantities per- 
taining to this flow will be denoted by the subscript i, e.g. Hi (Yi) and 4 (Yi). 

To be consistent with the assumption of axial symmetry, the inner region 
must be centred upon, and symmetric about, the z-axis. In  the problems that we 
shall consider, the inner region will be the interior of a body of revolution. 
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We will be basically concerned with two related questions. 
The first is the determination of the separated (inviscid) flow engendered by 

the presence of a solid symmetric obstacle placed on the axis. The obstacle is 
slender, its shape being given by r = e f ( z ) ,  0 < x < u. Here E is a small parameter, 
as for example the slope of the solid at  z = u, so that the disturbance to the outer 
base flow is small [of 0(s2) ] .  If the undisturbed base flow is given by Y b ,  then 
yo = yb+$h,,, where Y b  = O(so),  and the disturbance to the outer flow $ho is 
O(e2).  The base flow is disturbed by the solid surface, separates, and then reforms 
a finite distance downstream leaving behind a recirculating eddy. A free stream- 
line I?, defined by r = E ~ ( Z )  separates the eddy from the outer flow in this in- 
viscid model. It has been implicitly assumed here that the eddy region will have 
a thickness of the same order as the obstacle inducing separation. 

Figure 1 u illustrates the situation being considered. In order for it to hold, the 
Reynolds numbers both inside and outside the eddy, based upon a typical eddy 
dimension, must be appropriately large. 

The second question concerns the ‘free eddy’ model for vortex breakdown, 
and is illustrated figure 1 b. It is assumed that the eddy begins at z = 0, and 
ends at  z = b. 

3. Boundary conditions 
On the dividing streamline, the inner and outer flows must satisfy the kine- 

matic condition To = Yi 

and without loss of generality we may take zero as the common value; and the 
dynamic requirement, Pi = Po. (3) 

Furthermore, the shape of the wake eddy must be such that 

In  the eddy interiors, the assumption that the flow direction near the bounding 
surface is downstream implies that 

the equality being attained on r, on the axis r = 0 ,  and on any other curves form- 
ing part of the eddy boundary in the meridional plane. 

y (0, z )  = 0. 

Ti < 0,  

On r = 0 in the external flow 

We require all velocities to be finite for r < co. Therefore, a stronger statement 
may be made concerning the behaviour of Yo and Yi near the axis, i.e. 

Yo,i = O(r2)  as r+O. 

As r2 + x2 + co, grad (Yo -+ Y b )  + 0,  the given base flow, so for large distances, 

grad $ho -+ 0. ( 5 )  
In  order that the tangential velocity remain bounded on r = 0, where 

Ti = Yo = 0, Fi and Fo are restrained to have 

4 ( 0 )  = 0 = FO(O). 
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Hence, tangential velocities vanish on I?. Also, since I’ is a streamline, H, and 
Hi are (in general, different) constants on I?, the difference of which we take to be 
h, Ho(0)-Hi(O) = h. 

Continuity of pressure is assured if 

w:[l+€2(RI)z] - w;[l+s2(BI)z] = h. 

Since the base flow is only slightly disturbed, write 

W0(€R, 2 )  = w, ( 2 )  + w*, 
where w, (2) = wb (d?, 2 )  

and wb(&,z) is the axial velocity that would be attained a t  r = eR in the un- 
disturbed base flow, and w* is the disturbance to the outer flow caused by the 
presence of the eddy. But w* < V, by hypothesis, so, on ignoring error terms 
consistent with the accuracy sought here, (6) may be approximated as 

W : + ~ W ~ W * - W $  = h. (7) 

This is the form of (3) that is convenient to apply. 

4. The outer flow 

the disturbance to y b  caused by a slender body of shape r = ER(z),  where 
The problem for the outer flow for wake eddies is identical to that of finding 

Analogous remarks apply to the case of the free eddy, in which case a+ 0 in 

R2(z) will be assumed to have a continuous second derivative in (0, b). 
It was previously pointed out that the disturbance $, to ‘rr, is of second order 

(8) and f does not appear. 

in e. Assume H’(Y) and PF’(Y)  to have second derivatives. Then 

H ~ Y )  = H ~ Y , )  + H”(Y~) 1~. + o(e4) 

and pp’ (y )  = E%‘(y,) + ([p’(‘rPb)]’+ p p ( y b ) )  $- f o(e4). 

(As this section involves only the outer flow, we shall drop the subscript 0 . )  

( 2 ) ,  we find that on ignoring a relative error of order e2, 
Introducing these expansions into ( 2 ) ,  and remembering that ‘y., itself satisfies 

D2$ = [&r2m(r, x )  - n(r, x ) ]  $, (9) 

where 

and 

m = H ” [ y b  ( r ,  x ) ]  

n = *A2 [P2(Yb)]”. 

Equation (9) is linear, but cannot be solved until Yb and P (hence H ,  thence 
m and n) are prescribed. 

The simplest non-trivial choice leading to a swirling outer flow is wheel flow, 

!f!b = &r2 and P(Y) = Y. in which 
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Wheel flow is the superposition of a uniform axial stream with B solid body 
rotation. With the Y b  and F0 for wheel flow, (9) assumes the form 

D2@+h2$ = 0, (10) 
and the equation is exact. That is, in wheel flow, all of the error terms in (9) 
vanish. An extensive literature on the perturbation of wheel flows by solid 
bodies exists, the reader is referred to Squire's (1956) review for examples. 

Because of its simplicity, we shall carry out the analysis for wheel-flow. It 
should be emphasized, however, that other choices are also tractable analytically, 
although the results are more complicated. 

(In regard to our model for vortex breakdown, there may be disadvantages 
in the choice of this simple outer flow. It is completely stable, and therefore is 
not likely to engender a breakdown and hence a secondary vortex. In  each of the 
experimental cases cited, the primary flow possessed azimuthal vorticity and 
(often) an axial pressure gradient, neither of which is present in simple wheel 
flow. Our analysis can be applied to generalized wheel flows, which have pressure 
gradients, so this latter objection is not serious. Also, it seems to be true that 
observed outer flows are reasonably well approximated by wheel flow, at  least 
over the immediate region of the secondary flow. Thus, although the inception 
of the eddy may be due to features of the outer flow lacking in wheel flow, the 
structure of the eddy may possibly be well represented by an interaction with 
an external wheel flow.) 

The boundary condition on the surface r = ER is 

y = = b + @ = o o .  

But, on r = ER, y.'b = $e2R2, SO 

on r = eR. 
As in slender body theory, we may transfer the boundary conditions (1  1) from 

the body surface to the axis r = 0, with error of O{e410g (lie)}. At infinity, the 
boundary condition (5) applies. 

We shall now solve for @ by operational methods which amount to a modifica- 
tion of the approach of Adams & Sears (1953) towards slender body theory to the 
case where swirl exists. 

Apply the Fourier transform, 

g(r;  w) = g(r ,  x )  e--iw*dz, f:_ 
- 

to (10) t o  obtain @rr - (I/?-) $,, + (A2 - w2) $ = 0. 

Equation (12) has solution 
- 

@(r; w )  = (c2/2n) r{A(w) 4 (YO) + m u )  K1 (rQ2)), 

Q(w) = (w2 - h2)k 

where Il and K ,  are modified Bessel functions, and 

Let w = c+ir, 

then for IcI > h on r 5 0, is real. Branch cuts may be chosen such that Q > 0 
for IcI > h on the real w-axis; or alternatively, in such a way that L2 changes 
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sign for IcrI > h as cr itself changes sign. These latter branches are not acceptable, 
since K ,  diverges for large negative s1, and I, as Re Q + + 00. Therefore, a branch 
is chosen with l2 > 0 for lcrl > 0 on 7 = 0. Two suitable choices for cuts are given 
in the appendix. 

Denote m2R2(z) by the symbol e2X(z), which then represents the cross-sectional 
area of the body at  x ,  and let its transform be e2S(o). Then the transform of (1 1) is 

- 
?+h(O; w )  = - (€2/27r) S ( w ) .  (13? 

A(cr) = 0 for lcr] > A. (14) 

Since II ( x )  -+ co for Rex -+ co, then for o real, 

Also 

and rI,(rQ) = O(r2Q) as r+O. 

in order to satisfy (13). 

rK,(rQ) = (1/Q) [I +O(r2Q2logr2Q2)], 

Hence, B ( w )  = - Q ( w ) S  

Therefore, the solution for g is 
- 
@ = ( ~ 2 / 2 n )  r{A(w) I, (?a) - QS(u) K1(rs1)} 

so that the disturbance axial velocity, w*, has transform 

W” = ( l / r )&.  = (e2/2n)(AQIo(rQ)+ s12S(o)K0(rs1)}. (15) 

The solution (15) is not unique, since the boundary conditions fail to deter- 
mine A(w) completely, instead specifying it only over a portion of the real axis 
by (14). This is a manifestation of the non-uniqueness in rotating flows past bodies 
first noted by G .  I. Taylor (cf. Squire 1956) and further discussed by Fraenkel 
(1956)) and by Stewartson (1958). The non-uniqueness has yet to be resolved, 
but it is clear that additional conditions must be placed upon the flow to render 
it unique. One possibility, considered by Fraenkel, is to confine the flow with a 
tube but this fails when h is increased above a critical value. Fraenkel and 
Stewartson have proposed that there should be no upstream waves, a condition 
suggested by a transient analysis. We shall not speculate as to what are the 
correct additional conditions required, since the non-uniqueness will be shown 
not to affect the interaction with the eddy to our order of approximation. We 
only note that Stewartson’s criterion will yield a unique outer flow in our case. 

The inversion of (15) is carried out in the appendix where it is shown that 

cos [h(r2 + (2 - t)2)*] at 
(r2 + (z - t)2)& 

[X”(t) + P X ( t ) ]  

where A ,  = ReA(w), A, = ImA(w). In order for w* to be real, A and S mus 
related by 

sin [A(r2 + ( z  - t)2)+] 
(r2 + (2 - t)2)a- 
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The formula (16) generalizes that encountered in potential slender body theory 
(cf. Adams & Sears 1953), to which it reduces upon setting h = 0. 

It is further shown by some manipulation in the appendix, and by carrying 
over results for the irrotational case which may be found in Ward (1955, p. 189), 
that on and near the surface r = eR(z) (0 < x < b), 

- ‘s”8 log (2 - t )  d(SN + h28) + O [ ( P  + 1) €21. 
2 0- 1 

Here the integrals are interpreted in the Stieltjes sense, and the limit 6+0 
is to be taken. 

Except possibly in the vicinity of the leading and trailing ends 

w* = (€2/27J)[S”(Z)+h~X(z)]log *r+O[(h2+ 1)€2]. (17) 

The error in this expression is O[s2X”(0 + ) log z] + O[e28”(b - ) log ( b  - z ) ]  so that 
if S”(O+) = S”(b-) = 0, (17) holds uniformly on the eddy surface. It will be 
shown later that a consistent solution for the eddy shape near free ends requires 
S“ to vanish there. In  the case of a wake eddy S“(0 + ) occurs on the solid surface, 
so i t  is consistent to assume that (17)  holds uniformly on r, the free streamline. 

Ignoring the error terms in (17), on r 
w* = .2( (TI’ + h2a) log €%, (18) 

where we have put a ( z )  = (1/4n)#(x). 

From (18), the perturbation axial velocity is of order @log (l/e2). Notice that the 
undetermined portion of the solution for w*, i.e. the part involving the unknown 
quantities A,, A,, is O(e2) ,  as are the error terms in (17). Thus to lowest order they 
do not affect the perturbation velocity on r = sR(x). It should be kept in mind, 
however, that in practical situations €2 terms are comparable to s2 log ( l /e)  
terms even for E fairly small, so this error can be appreciable. Also notice that 
the approximation requires sh to be small, as well as e itself. In terms of physical 
variables, this demands that r,SZ,/W, < 1, where ro is the maximum radial 
extent of I’. This, in effect, is a requirement that the perturbation azimuthal 
velocity should be small. At the interface, v is perturbed from its undisturbed 
value ro S Z ,  to zero. In  the experimental run made by Chanaud (1965) referred 
to in the discussion to follow, h based upon eddy length, was about 2 ,  for an 
E + 0.13. 

5. The inner flow 
From 5 2, Yi satisfies the equation 

D2Yi = 4r2H;(Yi) - hz&F;(Yi). (19) 

(Only the inner flow is considered in this section, so we shall drop the subscript.) 
As Batchelor (1956a) has shown, for axisymmetric regions of closed stream- 

lines in steady flow, there can be no distributed axial vorticity as Re + co from 
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finite values. Azimuthal swirl is permitted, but only of potential type, i.e. 
rv = constant. Since the axis r = 0 may be approached within our eddy, we 
must require this constant to be zero. Thus there is no azimuthal swirl. Batchelor 
further shows that, if swirl is absent, the single (azimuthal) component of 
vorticity remaining must be proportional to r alone, so that Hl(Yi )  = constant. 

Recognizing that the interior vorticity may be large, we write (in view of 
the above remarks) 

H ' ( Y )  = 2$/€2. (20) 

Introduce the magnified co-ordinate 

q = e-lr 

into (19) to obtain YP,, - (117) Y!, + E2Yzg = €2$?p. 

w r ,  4 = ."(r, 4 .  

$,, - Pir) @, -PI2 = - €"ZZ* 

Since Y = O(e2) ( 9  3), put 

Then in the eddy we have 

(21) 

It is expected that qFZz will be bounded, except possibly in the neighbourhood 
of the eddy ends. Thus, we can ignore the right-hand side of (21) except possibly 
at  the eddy ends, where a 'boundary-layer' type of behaviour may require the 
full equation (21) for solution. We shaIl not consider this complication, but 
merely point out that it is likely that such singular regions can be handled by 
the same method used by Childress (1966) in the two-dimensional case. An argu- 
ment will be advanced later in support of the view that such singular zones will 
have at  most a weak effect upon the solution for u at an eddy free end, although 
they govern the flow locally. 

= R(x), the appropriate boundary conditions 
on @ are 

and @ < 0 for all r.  Thus z enters the solution only as a parameter through the 
condition at  q = R. It is not possible to satisfy the boundary condition @ = 0 
at z = a ,  hence the above remarks about singular zones. 

Since I? is given by the curve 

@ ( O ;  X )  = @(R; Z )  = 0 (22) 

The solution for w appropriate to (21) and (22) is 

w = &3[2$- R']. (23) 

w = $$R2 = $ u(4. 

Here /3 2 0 in order to keep 9 non-positive in the eddy as required. On I' 

(24) 

6. Pressure match 
Certain deductions about the flow in the eddy can now be made from the 

pressure condition (7), which will in fact provide the equation determining the 
eddy shape X(z). 

1 + 2 ~ * - / 3 ~ 0 . ~  = h From (7) and (24) 

since W,(Z) = 1. 
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It is clear from (25)  that it  is not possible to have p2 = O( 1) as e+ 0. If it were, 
then cr would be a constant. This violates the assumptions concerning slenderness 
at  the free end or ends of the eddy, where R would have to fall rapidly to zero. 
Thus p2 = O{s2 log ( 1/c2)}, and we therefore take 

p2 = 2aWog (I/€.”) 

h = 1 - 2ks210g (1/€2), 
and, in addition, 

where k: and a2 are assumed to be independent of E as e+ 0. 
Continuity of pressure is then assured providing 

w* = €2log(l/€2)[a2cr2-k:], 

or 
1 

[a”(z) + A2a(x)] log - - log - [k: - a2cr23. (A) - €2 

Since w* is in error by O(e2),  equation (28) has a relative error of O(l/loge2a). 
A solution for cr will be found in the next section. First, however, we summarize 

the results of this section. 
As a + O  (as it must at a free end) equation (28) requires a”(z)-+O as well. 

Hence the free end of an eddy has a cusped shape (the consistency of the remarks 
following (17) is hereby demonstrated). It has been known for some time that a 
general requirement for the ‘free end’ of an eddy bounded by a vortex sheet is 
that it must be cusped (see 0 1). 

Since the approximate solution for wi vanishes as cr+O, as does the exact 
solution inside the eddy, it is unlikely that the approximations made in the 
inner flow will much affect the solution for the cusp. The axial extent of the cusp 
area here is small, since the logarithm is a slowly varying function. In  fact, the 
cusp ‘length’ vanishes exponentially as e+ 0,  a fact perhaps connected either 
with the application of linearized boundary conditions to the outer flow, or the 
neglect of O(@) terms. 

Since ,4 = O[c{log (l/e)}4], the inner velocity is small of this order, but the inner 
vorticity is large, being of O[{log (l/e)P]. 

7. Eddy shape 

already been given in $3, (4). 
Equation (28) governs a, and the appropriate boundary conditions have 

To integrate (28) let dv/dx = 0, 

then CT” = CD(dCD/dcr), and hence 

a2 

€6 
CD2 = - A2a2 + 2 log li ( € 2 ~ )  + - li ( ~ 6 ~ 3 )  

where the limits of integration have been chosen to satisfy the boundary condi- 
tion CD = 0 at cr = 0. Here li (x) is the logarithmic integral 

a function which is tabulated (cf. Abramowitz & Stegun 1964). 
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But as x -+ 0, li (2) has the asymptotic expansion 
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X 
li(x) N -~ 

log (I/.) (1 - 
Since our original equation (28 )  has error of 

it is consistent with our accuracy to replace li (2) by - x/log (1/x) wherever it 
occurs. 

da 2 log (1/€2)  ( a y ) ] b  
dz [ 2+log(l/€2u) 
- = *  -ACT lea-- . Thus, 

The upper sign clearly holds for z < z,, where x, is defined as that value of z for 
which u reaches a maximum or a < u(z,) in the interval (a,b). The lower sign 
then holds for z 2 z,. At z,, of course, a‘ = 0. 

Furthermore, 

and this deviates from unity only for u - e2. 
Accordingly, away from the cusp (u = 0), as E - +  0 we have 

d = [ 2 k a  - AW - + 3 ~ 3 ] * .  (30) 

We treat this case first, and then return to consider conditions near the cusp, 

At z 
where c is not large compared to e2. 

a in the wake eddy, we have the additional initial data 

Equation (30) may be integrated to give u ( z ) .  The equation only has relevance 
for those positive u for which 

P(u;a,k ,A)  z 2ku-A2u2-$a2u3 >/ 0. 

Now it is useful to be specific about the definition of e. It is convenient, for 
both wake and free eddies, to take e as the profile fineness ratio, maximum dia- 
meter divided by total length. 

With this definition of e, the maximum radius occurs when R = 1, or u = a, 
which we suppose occurs for z = z,. At this point, u’ = 0. 

Thus the only non-negative zeros of P occur at  u = 0, as already noted, and 
at u(z,) = 2. Outside of this range, either u or P (or both) are negative. Since 
P(+; a, k, A)  = 0, k may be eliminated in favour of a and A, i.e. 

k = &h2+&a2, (32) 

which shows that k: must be positive, and 

P(u;a,A)  = a[+-a][A2+*a2(++u)]. 
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Thus, B increases from its initial value ~ ( a )  = $f2(a)  (or zero in the free eddy, 
where a = 0 ,  f ( a )  = 0 )  to its maximum B = f, occurring at  z = z,, and then 
decreases to zero again a t  z = b. 

In  view of these remarks, the solution may be written in terms of F( <Dl v), the 
elliptic integral of the first kind and the Jacobian elliptic function en (x) (Abramo- 
witz & Stegun 1964): 

2, = a + (2/A) (1 - 2v)*P[cos-lf(a)l v], \ 

J 
(33) 

p 0 5  
L 

0 

z/zo 

FIGURE 2.  Normalized eddy shape function, here ro = r(z,,) is the maximum radial exten 
of the eddy. This function may be used to construct the shape of either free or wake eddies 

From its definition, O < V < & ,  

and the event v = 4 occurs only if h = 0 (potential outer flow). As h+O 

2(1-2v)& 2 J3 -- - 
h a 

lim 
h+O 

Plots of z/zo us. R are shown in figure 2, for v = 0 and v = 4. All other curves 
for intermediate v lie between these two. 

Notice that the initial condition (31) for wake eddies does not directly enter 
into the form of the solution. I ts  effect is to specify the parameter a2 in terms of 
A. Therefore, for a given outer flow ( A ) ,  the problem for slender wake eddies 
appears to be uniquely determined by the geometry of the solid at  the separa- 
tion point, providing that the maximum radius of the separated region can be 
observed. For then the boundary condition (31) together with (32) requires 
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and knowledge of a2 provides v, hence the shape and total eddy length, i.e. 

b = z0-a+(2/h)(1-2v)+K(v) .  ( 3 4 )  

Similar results hold for the free eddy. If, in ( 3 3 ) ,  we put a = f ( a )  = 0, the solu- 
tion for this case obtains. Free eddies are therefore symmetric in shape about the 
station z = zo, and have total length b = 22,. 

Since 2, = (2 /4(1-2v)+K(v) ,  

where K(u) = F(&rJv) is the complete elliptic integral, we have as total 
dimensional length 1 of the free eddy 

1 22,L = 4(1-22~)*K(~)(W,/!2,,). ( 3 5 )  

This predicts that free eddies with c < 1 have a maximum length, 

kn,,, = 2+9, 

where L, is the 'swirl length', Wm/Qm* A similar, but more complicated, formula 
can be written down for the maximum length of wake eddies. 

Notice that a measurement of the total length of a free eddy establishes v 
via (35 ) ,  if the external flow ( A )  is known. This fixes the vorticity inside the eddy, 
as a2 may be found from v from (33 ) .  

If, in addition to 1,  the maximum diameter (hence 8) of the eddy may be 
measured, the complete shape and hence flow details inside and outside may be 
calculated. 

8. The cusp 
So far, solutions have been obtained which exclude the cusp region. In  this 

section, an attempt is made to fill this gap partially. 
The difficulty encountered so far in obtaining the closed solution ( 3 3 )  is that 

the expansion of cr'(z) for small E is not uniformly valid. It fails as cr tends to 
zero, in particular, where (T = O(E'), which occurs near a free end. This difficulty 
does not arise at  a non-free end, since the solid forming the initial stretch of the 
free streamline has 

Here we shall examine the behaviour of the solution in the immediate neigh- 
bourhood of a cusp. More precisely, we look at  regions for which R = O(S) .  

From (29), with y = + klog ( l /c2) ,  we have 

= O ( 1 )  there. 

This shows that swirl of the outer flow does not affect the shape at  the CUSP 

(since A does not appear), in fact in accord with physical intuition. 
The sign choice above depends upon whether the free end being considered 

is on the upstream or downstream side of the eddy. For definiteness, choose the 
upper sign, corresponding to an upstream free end. 

The cusp solution with R = 0 at z = 0 is 

where erfc ( x )  is the complementary error function. 
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rlz, 

1 . 1  I I I I 1  1 I 

9. Discussion 
To test the relevance of the present analysis, experimental information about 

the internal motions in eddies is required. Such experiments have yet to be 
performed on vortex breakdown flows, since introduction of conventional probes 
destroys the eddy. Various new and sophisticated methods of flow measurement 
are currently under development which may be able to circumvent this difficulty. 
It remains, however, a challenging piece of work. 

A 

I I I ~ I I I I I  

0 5  1.0 
zlz, 

FIGURE 3. Eddy with fheness ratio G = 0.5, and v = 0. Curve for v = B lies directly 
below. Dotted segments are drawn to illustrate the way in which a length for the eddy was 
established from Harvey’s photograph. 

At the moment, the only available ‘data’ are photographs of the outlines of 
vortex breakdown eddies taken by various workers, notably Harvey (1962) 
and Chanaud (1965). In  figures 3, 4 and 5, the predicted shapes for fineness 
ratios 0.5, 0.53 and 0.13 are plotted. The theory is applicable only when 6 < 1, 
but the choice of numbers here was made to correspond roughly to photographs 
appearing, respectively, in figures 3 and 4 of Harvey’s paper, and figure 4(a) 
of Chanaud’s paper. [The end points of the eddies in the photographs cited are 
somewhat indistinct (and suggestively cusp shaped).] In  order to establish 
fineness ratios and thereby fix the corresponding theoretical shapes, a choice 
had to be made as to where the eddies began and ended. We took these to be 
where the entering dye or smoke filament began noticeably to increase in dia- 
meter. The half-length was then taken to be from this point to the point of maxi- 
mum diameter, and the latter dimension was also measured. 

Notice that the shapes of the predicted curves and those appearing in the 
photographs are very similar. In  fact, if the curves in figures 3,4 and 5 are drawn 
to  the same scale as their photographed counterparts and overlaid on them, the 
agreement is striking. Of course, many functions other than (33) also describe 
the rather undistinguished eddy shapes, so that the agreement may be only 
circumstantial, and no serious conclusions should be drawn from the favourable 
comparison. This is particularly true in the light of the inappropriateness of the 
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theory for such sizeable e, neglect of terms O(e2) compared to those O{e2 log (I/€)) 
is not justified. 

Notice that (35) shows that, for a given L,, the stagnant eddy is the longest, 
while the most vigorous is the shortest. Irrotational outer flow is an exceptional 
case for which the eddy length is not determined by the interior vorticity. In  
the latter case, the problem has no natural length scale to which eddy length 
may be compared, hence eddy lengths are not calculable from this theory. 

rlz, 

1.0 0 5  

FIGURE 5. Eddy with fineness ratio E = 0.13, v = 0, forward half only. 

0 5  1.0 

zlz, 

It is clear that the density of the fluid in the eddy can differ from that in the 
main stream without affecting the analysis. If surface tension effects may be 
ignored (as with gases), and if the speed inside the eddy remains less than that 
outside (so the eddy does not run down by doing work on the flow outside through 
the viscous shear layers), the analysis may describe a flow involving two different 
fluids. 

The author is indebted to Prof. F. K. Moore for several discussions culminating 
in the formulation of this problem, and for his helpful criticism of a draft of the 
paper. The author would also like to express his gratitude to Dr R. C. Chanaud 
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for the loan of several unpublished photographs of vortex breakdowns obtained 
in his researches. Finally, helpful comments of the referees are appreciated. 
This work was sponsored by a grant from NASA, technically monitored by the 
Lewis Research Center. 

Appendix 

Let m 

I - ‘s ( 0 2 -  A Z )  ~ ( w )  K,  ( r ~ )  eiwzdw. 
, -2n - m  

Then the inversion of (15) is 

and we shall evaluate I, by means of a contour integral to arrive at  (16). 

7 

L - I  ==I=--- 

@ ) 
FIGURE 6. The o-plane showing two acceptable branches for C2 and corresponding 

integration paths for G(z). (a) Cuts for C&. ( b )  Cuts defining 0,. 

By the convolution theorem and the definition of R(w) ,  
a3 

~ ( t )  G(z  - t )d t ,  S(Z)  = S”(Z) + A2S(z),  
-m 

Cut arrangements for two acceptable branches for !2 (cf. discussion following 
(12)) are shown above in figures (6a)  and ( 6 b ) ,  together with the associated paths 
of integration for G(z). On both branches Q, and Q2 we have Q(v) = Q( -c). 
For definiteness, we choose branch SL, ( w ) .  

Since Q, is even in v for w real, we can write 



Axisymmetric eddies in a rotational stream 547 

Consider the two functions 

for z positive. 

w-plane, 
By completing the contour around the boundaries of the first quadrant in the 

(A 2 )  

To evaluate Q-, note that Q, and Q2 are related for Im w = 0 by the following: 

Therefore (cf. Abramowitz & Stegun 1964, $9.6) ,  

i “  Q+ = 71. f o  K,[ir(T2 +A%)*] e-7Zd7. 

Ql(a) = Q2(a), for la1 > A;  and Ql(a) = i(A2-a2)* = -Q2(u), for la1 < A. 

Ko(rQl) = K,(rQ2)-niJ,[r(A2-a2)*] for la] < A, 
.Ko(rQl) = Ko(rQ2) for la/ > A, 

so that Q- may be expressed as 

KO (rQ2) e-iuzdu- i J, [r(A2 - a”*] e-%h. 

The KO integral appearing here may be evaluated by completing the contour 
around the boundaries of the fourth quadrant in the w-plane for z > 0 with result 

jw KO [ - i r ( T 2  + h2)*] e+”d7 - i J, [r(A2 - a2)*] e-ivsda. (A 3 )  

Upon adding (A 2 )  and (A 3 )  and using the relation KO ( - ix) = KO (ix) + niJ, (x) 
s: &-(z)  = - - 

= o  

for x real and positive, we may arrive at  the result 

where arg (u2 - A2) = =if u < A. This last integral appears in Luke (1962, p. 326) 
and has the value 

(r2 + x 2 ) t  exp [ - ih (ra + z2)4]. 

Since the result is even in z, it holds for x negative as well as z positive. 
Since A(a) = Al(a)+iA2(a)  = 0 for la1 > A, the complete result for (A 1) 

is obtained. Upon separation into real and imaginary parts this yields expressions 
( 1 6 )  and (16a)’ respectively. 

Next we examine the behaviour of 

at 
cos A[+ + ( z  - t)”* j 0 [r2+(x-t)2]4 

as r+O, for 0 < z < b.  
This integral may be rewritten as 

The first term is in the form usually encountered in slender-body theory (where 
s = S ’ ( z )  instead of S“+AzS as here), and may be approximated as in (32) as 
r -+ 0. In  particular, it  is of the order log r as r -+ 0. On the other hand, as r + 0, 
z -+ t ,  the kernel of the second integral is bounded by 2A/n, so the second integral 
is O( 1 )  as r -+ 0, hence ( 1 7 )  results. 

35-2 
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